
ephyviewer Documentation
Release 1.2.1

Samuel Garcia, Jeffrey Gill

Jan 14, 2021

Contents

1 Overview 3

2 Installation 5

3 User Interface 7

4 Examples 9
4.1 Simple signal viewer . 9
4.2 Signal viewer with data source . 10
4.3 Signal viewer with markers . 12
4.4 Time-frequency viewer . 14
4.5 Spike train viewer . 16
4.6 Epoch viewer . 17
4.7 Epoch encoder . 19
4.8 Mixed viewer . 21
4.9 Viewers from Neo objects . 22

5 Release Notes 25
5.1 Version 1.2.1 . 25
5.2 Version 1.2.0 . 25
5.3 Version 1.1.1 . 26
5.4 Version 1.1.0 . 26
5.5 Version 1.0.1 . 28
5.6 Version 1.0.0 . 28

i

ii

ephyviewer Documentation, Release 1.2.1

Do you have a large neural/electrophysiological dataset? Do you want to closely examine the raw signals and other
events before performing an in-depth analysis? Good news! ephyviewer is your friend.

ephyviewer is both a standalone application and a Python library for creating scripts that fulfill your visualization
needs.

For an example of an application that utilizes ephyviewer’s capabilities, see the neurotic app.

Contents 1

https://github.com/jpgill86/neurotic

ephyviewer Documentation, Release 1.2.1

2 Contents

CHAPTER 1

Overview

ephyviewer is a Python library for building custom viewers for electrophysiological signals, video, events, epochs,
spike trains, data tables, and time-frequency representations of signals. It also provides an epoch encoder for creating
annotations.

ephyviewer can be used as a standalone application (requires Neo 0.6) by launching it from the console, then using
the menu to open a data file:

ephyviewer

See the documentation for neo.rawio for available formats.

You can skip the file menu by specifying a filename from the console (and optionally the format, though this can
usually be detected automatically):

ephyviewer File_axon_1.abf
ephyviewer File_axon_1.abf -f Axon

However, where ephyviewer really shines is as a library for designing custom viewers in simple Python scripts that
meet your individual needs:

import ephyviewer
import numpy as np

app = ephyviewer.mkQApp()

create example signals
sigs = np.random.rand(100000,16)

create a viewer for the signals
sample_rate = 1000.
t_start = 0.
view1 = ephyviewer.TraceViewer.from_numpy(sigs, sample_rate, t_start, 'Signals')

create a window

(continues on next page)

3

https://neo.readthedocs.io/en/latest/

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

win = ephyviewer.MainViewer()
win.add_view(view1)
win.show()

launch the app
app.exec_()

Have a look at the Examples to see how to create both simple and sophisticated viewers, and at the User Interface
guide for how to use the interface.

4 Chapter 1. Overview

CHAPTER 2

Installation

Requirements:

• Python 3.4

• numpy

• scipy

• matplotlib 2.0

• pyqtgraph 0.10.0

• PyQt4 or PyQt5 (manual installation required)

Optional dependencies:

• Neo 0.6 (standalone app and Neo sources)

• PyAV (video viewer)

• pandas (dataframes and CSV writable epoch sources)

To install the latest release:

pip install ephyviewer

To install the latest development version:

pip install https://github.com/NeuralEnsemble/ephyviewer/archive/master.zip

To install with conda (python-neo and av are not strictly required but are recommended):

conda install -c conda-forge ephyviewer python-neo av

5

ephyviewer Documentation, Release 1.2.1

6 Chapter 2. Installation

CHAPTER 3

User Interface

The viewers are highly customizable:

• All panels can be hidden, undocked, stacked, or repositioned on the fly.

• Right-click on the title bar of a visible panel to restore hidden panels.

• Double-click in the plotting region of many viewers to open an options window with additional customization
controls.

Time is easy and intuitive to navigate:

• Pressing the play button will scroll through data and video in real time, or at a higher or lower rate if the speed
parameter is changed.

• The arrow/WASD keys allow you to step through time in variable increments.

• Dragging the horizontal slider moves through time quickly.

• Jump to a time by clicking on an event in the event list or a table entry in the epoch encoder.

It is also easy to quickly adjust scale and placement:

• To show more or less time at once, right-click and drag right or left to contract or expand time.

• Press the auto scale button to automatically scale signals and color maps.

• Scroll the mouse wheel to zoom in a trace viewer or a video viewer, or to rescale the color map in a time-
frequency viewer.

• Scroll the mouse wheel on a trace label to adjust the scale of an individual trace (by_channel scale mode
only).

• Left-click and drag on a trace label to adjust its vertical offset, or in a video viewer to reposition the video frame.

• Adjust scale mode (real vs arbitrary units) and individual signal gains and offsets in the detailed options window
of the trace viewer (double click to open).

The epoch encoder has many modes of interaction as well:

• Click “Show/hide range” (shortcut: r) to toggle the display of a time range selector, which can be positioned
with the mouse or by using dedicated buttons (labeled “>”; shortcuts: [and]).

7

ephyviewer Documentation, Release 1.2.1

• Customizable key bindings (default: number keys) allow you to fill the selected time range with an epoch if the
selector is enabled, or to place new epochs of a fixed (and adjustable) duration at the current time if it is disabled.

• Click on an epoch to select the corresponding entry in the epoch encoder’s data table, where you can change the
label associated with it.

• Click on a row in the data table to jump to the start of that epoch.

• Double-click on an existing epoch to enable the time range selector and position it on that epoch.

• Toggle between epoch insertion modes using the radio buttons or modifying shortcut key presses with the Shift
key:

– Mutually exclusive mode: Placing an epoch where there is already one will delete the overlapping portion
of the old epoch.

– Overlapping mode: Epochs are permitted to overlap.

• Merge overlapping and adjacent epochs of the same type with the “Merge neighbors” button.

• Fill gaps between epochs using the “Fill blank” button.

• Click “Save” (shortcut: Ctrl+s, or Cmd+s on Mac) to write the epochs to a file.

8 Chapter 3. User Interface

CHAPTER 4

Examples

4.1 Simple signal viewer

trace_viewer.py

9

ephyviewer Documentation, Release 1.2.1

from ephyviewer import mkQApp, MainViewer, TraceViewer
import numpy as np

#you must first create a main Qt application (for event loop)
app = mkQApp()

#create fake 16 signals with 100000 at 10kHz
sigs = np.random.rand(100000,16)
sample_rate = 1000.
t_start = 0.

#Create the main window that can contain several viewers
win = MainViewer(debug=True, show_auto_scale=True)

#create a viewer for signal with TraceViewer
TraceViewer normally accept a AnalogSignalSource but
TraceViewer.from_numpy is facitilty function to bypass that
view1 = TraceViewer.from_numpy(sigs, sample_rate, t_start, 'Signals')

#Parameters can be set in script
view1.params['scale_mode'] = 'same_for_all'
view1.params['display_labels'] = True

#And also parameters for each channel
view1.by_channel_params['ch0', 'visible'] = False
view1.by_channel_params['ch15', 'color'] = '#FF00AA'

#This is needed when scale_mode='same_for_all'
#to recompute the gain
#this avoid to push auto_scale button
view1.auto_scale()

#put this veiwer in the main window
win.add_view(view1)

#show main window and run Qapp
win.show()

app.exec_()

4.2 Signal viewer with data source

trace_viewer_datasource.py

from ephyviewer import mkQApp, MainViewer, TraceViewer
from ephyviewer import InMemoryAnalogSignalSource
import ephyviewer
import numpy as np

#you must first create a main Qt application (for event loop)
app = mkQApp()

(continues on next page)

10 Chapter 4. Examples

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

#create fake 16 signals with 100000 at 10kHz
sigs = np.random.rand(100000,16)
sample_rate = 1000.
t_start = 0.

#Create the main window that can contain several viewers
win = MainViewer(debug=True, show_auto_scale=True)

#Create a datasource for the viewer
here we use InMemoryAnalogSignalSource but
you can alose use your custum datasource by inheritance
source = InMemoryAnalogSignalSource(sigs, sample_rate, t_start)

#create a viewer for signal with TraceViewer
TraceViewer normally accept a AnalogSignalSource but
TraceViewer.from_numpy is facitilty function to bypass that
view1 = TraceViewer(source=source)

#put this veiwer in the main window
win.add_view(view1)

#show main window and run Qapp
win.show()
app.exec_()

4.2. Signal viewer with data source 11

ephyviewer Documentation, Release 1.2.1

4.3 Signal viewer with markers

trace_viewer_with_marker.py

from ephyviewer import mkQApp, MainViewer, TraceViewer
from ephyviewer import AnalogSignalSourceWithScatter
import ephyviewer
import numpy as np

#you must first create a main Qt application (for event loop)
app = mkQApp()

#create 16 signals with 100000 at 10kHz
sigs = np.random.rand(100000,16)
sample_rate = 1000.
t_start = 0.

#create fake 16 signals with sinus
sample_rate = 1000.
t_start = 0.
times = np.arange(1000000)/sample_rate
signals = np.sin(times*2*np.pi*5)[:, None]
signals = np.tile(signals, (1, 16))

#detect some crossing zeros
s0 = signals[:-2, 0]
s1 = signals[1:-1,0]
s2 = signals[2:,0]

(continues on next page)

12 Chapter 4. Examples

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

peaks0, = np.nonzero((s0<s1) & (s2<s1))
peaks1, = np.nonzero((s0>s1) & (s2>s1))

#create 2 familly scatters from theses 2 indexes
scatter_indexes = {0: peaks0, 1: peaks1}
#and asign them to some channels each
scatter_channels = {0: [0, 5, 8], 1: [0, 5, 10]}
source = AnalogSignalSourceWithScatter(signals, sample_rate, t_start, scatter_indexes,
→˓ scatter_channels)

#Create the main window that can contain several viewers
win = MainViewer(debug=True, show_auto_scale=True)

#create a viewer for signal with TraceViewer
#connected to the signal source
view1 = TraceViewer(source=source)

view1.params['scale_mode'] = 'same_for_all'
view1.auto_scale()

#put this veiwer in the main window
win.add_view(view1)

#show main window and run Qapp
win.show()
app.exec_()

4.3. Signal viewer with markers 13

ephyviewer Documentation, Release 1.2.1

4.4 Time-frequency viewer

timefreq_viewer.py

from ephyviewer import mkQApp, MainViewer, TraceViewer, TimeFreqViewer
from ephyviewer import InMemoryAnalogSignalSource
import ephyviewer
import numpy as np

#you must first create a main Qt application (for event loop)
app = mkQApp()

#create fake 16 signals with 100000 at 10kHz
sigs = np.random.rand(100000,16)
sample_rate = 1000.
t_start = 0.

#Create the main window that can contain several viewers
win = MainViewer(debug=True, show_auto_scale=True)

#Create a datasource for the viewer

(continues on next page)

14 Chapter 4. Examples

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

here we use InMemoryAnalogSignalSource but
you can alose use your custum datasource by inheritance
source = InMemoryAnalogSignalSource(sigs, sample_rate, t_start)

#create a viewer for signal with TraceViewer
view1 = TraceViewer(source=source, name='trace')
view1.params['scale_mode'] = 'same_for_all'
view1.auto_scale()

#create a time freq viewer conencted to the same source
view2 = TimeFreqViewer(source=source, name='tfr')

view2.params['show_axis'] = False
view2.params['timefreq', 'deltafreq'] = 1
view2.by_channel_params['ch3', 'visible'] = True

#add them to mainwindow
win.add_view(view1)
win.add_view(view2)

#show main window and run Qapp
win.show()
app.exec_()

4.4. Time-frequency viewer 15

ephyviewer Documentation, Release 1.2.1

4.5 Spike train viewer

spikes_viewer.py

from ephyviewer import mkQApp, MainViewer, SpikeTrainViewer
from ephyviewer import InMemorySpikeSource

import numpy as np

#you must first create a main Qt application (for event loop)
app = mkQApp()

#create fake 20 fake units with random firing
#put them in a da ta source
all_spikes =[]
for c in range(20):

spike_times = np.random.rand(1000)*100.
spike_times = np.sort(spike_times)
all_spikes.append({ 'time':spike_times, 'name':'Unit#{}'.format(c) })

source = InMemorySpikeSource(all_spikes=all_spikes)

#Create the main window that can contain several viewers
win = MainViewer(debug=True, show_auto_scale=True)

view1 = SpikeTrainViewer(source=source)

(continues on next page)

16 Chapter 4. Examples

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

#put this veiwer in the main window
win.add_view(view1)

#show main window and run Qapp
win.show()

app.exec_()

4.6 Epoch viewer

event_epoch_viewer.py

from ephyviewer import mkQApp, MainViewer, EpochViewer,EventList
from ephyviewer import InMemoryEventSource, InMemoryEpochSource
import ephyviewer
import numpy as np

#Create one data source with 3 event channel
all_events = []
for c in range(3):

ev_times = np.arange(0, 10., .5) + c*3
ev_labels = np.array(['Event{} num {}'.format(c, i) for i in range(ev_times.

→˓size)], dtype='U')

(continues on next page)

4.6. Epoch viewer 17

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

all_events.append({ 'time':ev_times, 'label':ev_labels, 'name':'Event{}'.
→˓format(c) })
source_ev = InMemoryEventSource(all_events=all_events)

#Create one data source with 2 epoch channel
all_epochs = []
for c in range(3):

ep_times = np.arange(0, 10., .5) + c*3
ep_durations = np.ones(ep_times.shape) * .1
ep_labels = np.array(['Event{} num {}'.format(c, i) for i in range(ep_times.

→˓size)], dtype='U')
all_epochs.append({ 'time':ep_times, 'duration':ep_durations, 'label':ep_labels,

→˓'name':'Event{}'.format(c) })
source_ep = ephyviewer.InMemoryEpochSource(all_epochs=all_epochs)

#you must first create a main Qt application (for event loop)
app = mkQApp()

#Create the main window that can contain several viewers
win = MainViewer(debug=True, show_auto_scale=True)

view1 = EpochViewer(source=source_ep, name='epoch')
view1.by_channel_params['ch0', 'color'] = '#AA00AA'
view1.params['xsize'] = 6.5

view2 = EventList(source=source_ev, name='event')

#add them to mainwindow
win.add_view(view1)
win.add_view(view2, location='bottom', orientation='horizontal')

#show main window and run Qapp
win.show()
app.exec_()

18 Chapter 4. Examples

ephyviewer Documentation, Release 1.2.1

4.7 Epoch encoder

epoch_encoder.py

"""
ephyviewer also provides an epoch encoder which can be used with shortcut keys
and/or the mouse to encode labels.

ephyviewer makes available a CsvEpochSource class, which inherits from
WritableEpochSource. If you would like to customize reading and writing epochs
to files, you can write your own subclass of WritableEpochSource that implements
the load() and save() methods.

Here is an example of an epoch encoder that uses CsvEpochSource.

"""

from ephyviewer import mkQApp, MainViewer, TraceViewer, CsvEpochSource, EpochEncoder
import numpy as np

lets encode some dev mood along the day

(continues on next page)

4.7. Epoch encoder 19

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

possible_labels = ['euphoric', 'nervous', 'hungry', 'triumphant']

filename = 'example_dev_mood_encoder.csv'
source_epoch = CsvEpochSource(filename, possible_labels)

#you must first create a main Qt application (for event loop)
app = mkQApp()

#create fake 16 signals with 100000 at 10kHz
sigs = np.random.rand(100000,16)
sample_rate = 1000.
t_start = 0.

#Create the main window that can contain several viewers
win = MainViewer(debug=True, show_auto_scale=True)

#create a viewer for signal
view1 = TraceViewer.from_numpy(sigs, sample_rate, t_start, 'Signals')
view1.params['scale_mode'] = 'same_for_all'
view1.auto_scale()
win.add_view(view1)

#create a viewer for the encoder itself
view2 = EpochEncoder(source=source_epoch, name='Dev mood states along day')
win.add_view(view2)

#show main window and run Qapp
win.show()

app.exec_()

press '1', '2', '3', '4' to encode state.
or press 'show/hide range' and 'apply'

20 Chapter 4. Examples

ephyviewer Documentation, Release 1.2.1

4.8 Mixed viewer

mixed_viewer.py

import ephyviewer

#for this example we use fake source construct by theses function
from ephyviewer.tests.testing_tools import make_fake_video_source
from ephyviewer.tests.testing_tools import make_fake_signals
from ephyviewer.tests.testing_tools import make_fake_event_source
from ephyviewer.tests.testing_tools import make_fake_epoch_source

sig_source = make_fake_signals()
event_source = make_fake_event_source()
epoch_source = make_fake_epoch_source()
video_source = make_fake_video_source()

app = ephyviewer.mkQApp()
view1 = ephyviewer.TraceViewer(source=sig_source, name='signals')
view2 = ephyviewer.VideoViewer(source=video_source, name='video')
view3 = ephyviewer.EventList(source=event_source, name='events')

(continues on next page)

4.8. Mixed viewer 21

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

view4 = ephyviewer.EpochViewer(source=epoch_source, name='epoch')
view5 = ephyviewer.TimeFreqViewer(source=sig_source, name='timefreq')

win = ephyviewer.MainViewer(debug=True, settings_name='test1', show_global_xsize=True,
→˓ show_auto_scale=True)

win.add_view(view1)
win.add_view(view5, split_with='signals')
win.add_view(view2)
win.add_view(view4)
win.add_view(view3, location='bottom', orientation='horizontal')

win.show()

win.auto_scale()

app.exec_()

4.9 Viewers from Neo objects

22 Chapter 4. Examples

ephyviewer Documentation, Release 1.2.1

viewers_with_neo_objects.py

"""
Here is an example of opening viewers directly from neo objects.

There are two approaches:

* create each viewer with class method (TraceViewer.from_neo_analogsignal, ...)

* magically create all sources by providing the neo.Segment

"""
from ephyviewer import mkQApp, MainViewer, TraceViewer, SpikeTrainViewer, EpochViewer,
→˓ EventList
from ephyviewer import get_sources_from_neo_segment, compose_mainviewer_from_sources
import numpy as np

from neo.test.generate_datasets import generate_one_simple_segment
import neo

here we generate a segment with several objects
(this is a bad example because it mimics old neo behavior for signals (one
→˓channel=one object))
neo_seg = generate_one_simple_segment(supported_objects=[neo.Segment, neo.
→˓AnalogSignal, neo.Event, neo.Epoch, neo.SpikeTrain])

the global QT app
app = mkQApp()

##############################
case 1 : create viewers one at a time directly from neo objects in memory
win = MainViewer(show_auto_scale=True)

from one neo.AnalogSignal
view1 = TraceViewer.from_neo_analogsignal(neo_seg.analogsignals[0], 'sigs')
win.add_view(view1)

from several neo.SpikeTrains (3 spiketrains here)
view2 = SpikeTrainViewer.from_neo_spiketrains(neo_seg.spiketrains[0:3], 'spikes')
win.add_view(view2)

from several neo.Epoch
view3 = EpochViewer.from_neo_epochs(neo_seg.epochs, 'epochs')
win.add_view(view3)

from several neo.Event
view4 = EventList.from_neo_events(neo_seg.events, 'events')
win.add_view(view4, location='bottom', orientation='horizontal')

win.show()

##############################
case 2 : automagically create data sources and a complete window from a neo segment

(continues on next page)

4.9. Viewers from Neo objects 23

ephyviewer Documentation, Release 1.2.1

(continued from previous page)

sources = get_sources_from_neo_segment(neo_seg)
win2 = compose_mainviewer_from_sources(sources)
win2.show()

app.exec_()

24 Chapter 4. Examples

CHAPTER 5

Release Notes

5.1 Version 1.2.1

2019-12-12

5.1.1 Bug fixes

• Prevent trace labels from moving when zooming (#85)

• Fix plot range (max y) for SpikeTrainViewer (#87)

5.1.2 Enhancements

• Add auto_scale_factor param to TraceViewer (#84)

• Add scatter_size param to SpikeTrainViewer (#88)

5.1.3 Documentation

• Add conda-forge install instructions to docs (#86)

5.2 Version 1.2.0

2019-10-09

25

https://github.com/NeuralEnsemble/ephyviewer/pull/85
https://github.com/NeuralEnsemble/ephyviewer/pull/87
https://github.com/NeuralEnsemble/ephyviewer/pull/84
https://github.com/NeuralEnsemble/ephyviewer/pull/88
https://github.com/NeuralEnsemble/ephyviewer/pull/86

ephyviewer Documentation, Release 1.2.1

5.2.1 Mouse and keyboard enhancements

• Adjust offsets and gains of individual traces in TraceViewer using the mouse (#75)

• Add EpochEncoder shortcuts for toggling range, setting left/right limits (#76)

• Add EpochEncoder shortcut for saving and smarter prompt to save at exit (#77, #78)

5.2.2 Other enhancements

• Add a parameter to NavigationToolBar for setting datetime string format (#70)

• Use scientific notation in TraceViewer gain spin boxes less often (#71)

5.2.3 Documentation

• Add links to RawIO list in Neo’s docs (#69)

5.3 Version 1.1.1

2019-07-15

5.3.1 Documentation

• Add long description and project URLs to PyPI metadata (#65)

5.4 Version 1.1.0

2019-07-15

5.4.1 New major features

• Add functions to make viewers directly from Neo objects (#8, #20)

• Add CsvEpochSource and many EpochEncoder enhancements (#13, #27, #60)

• Add keyboard shortcuts for navigation (#18, #25, #41)

• Add time zoom to most viewers, add global time zoom option (#17)

5.4.2 Aesthetics

• Standardize opacity, color, and z-order for vline marking current time for all viewers (#14)

• Improve label legibility (#19)

• Add scatter_size as an adjustable parameter to TraceViewer (#21)

• Remove “s” suffixes from navigation spinboxes for time and xsize (#24)

• Add line-width option to TraceViewer (#26, #43)

26 Chapter 5. Release Notes

https://github.com/NeuralEnsemble/ephyviewer/pull/75
https://github.com/NeuralEnsemble/ephyviewer/pull/76
https://github.com/NeuralEnsemble/ephyviewer/pull/77
https://github.com/NeuralEnsemble/ephyviewer/pull/78
https://github.com/NeuralEnsemble/ephyviewer/pull/70
https://github.com/NeuralEnsemble/ephyviewer/pull/71
https://github.com/NeuralEnsemble/ephyviewer/pull/69
https://github.com/NeuralEnsemble/ephyviewer/pull/65
https://github.com/NeuralEnsemble/ephyviewer/pull/8
https://github.com/NeuralEnsemble/ephyviewer/pull/20
https://github.com/NeuralEnsemble/ephyviewer/pull/13
https://github.com/NeuralEnsemble/ephyviewer/pull/27
https://github.com/NeuralEnsemble/ephyviewer/pull/60
https://github.com/NeuralEnsemble/ephyviewer/pull/18
https://github.com/NeuralEnsemble/ephyviewer/pull/25
https://github.com/NeuralEnsemble/ephyviewer/pull/41
https://github.com/NeuralEnsemble/ephyviewer/pull/17
https://github.com/NeuralEnsemble/ephyviewer/pull/14
https://github.com/NeuralEnsemble/ephyviewer/pull/19
https://github.com/NeuralEnsemble/ephyviewer/pull/21
https://github.com/NeuralEnsemble/ephyviewer/pull/24
https://github.com/NeuralEnsemble/ephyviewer/pull/26
https://github.com/NeuralEnsemble/ephyviewer/pull/43

ephyviewer Documentation, Release 1.2.1

• Allow user to change vline color (#45)

• Add param for setting background fill color of channel labels (#49)

• Use same color determination for EpochEncoder rectangles as EpochViewer (#50)

5.4.3 Zoom fixes

• Fix time zoom rate (#23)

• Fix signal offsets when zooming in TraceViewer (#48)

5.4.4 Plot fixes

• Fix time alignment across viewers by removing x-padding (#7)

• Fix poor plotting precision at long times (#28, #29)

• Fix for drawing epochs that end exactly at t_stop (#39)

• Fix TraceViewer drawing incomplete curves when zoomed in (#47)

• Appropriately rescale raw signals in AnalogSignalFromNeoRawIOSource (#44, #56, #57)

• Fix trace label and baseline placement for RawIOs with non-zero offset (#58, #61)

• Fix crash when scatter plot channels are hidden (#64)

5.4.5 Video fixes

• VideoViewer performance fixes (#10, #11)

• Fix for video streams lacking start_time (#30)

• Address PyAV deprecation warnings (#31)

• Fix for seeking non-existent video frames before start and beyond end of video (#33, #36)

• Ensure time_to_frame_index always returns the frame preceding t (#35)

• Clear video image when t is before the start or after the end of video (#37)

5.4.6 Other bug fixes

• Fix missing icons for play and stop buttons (#15, #46)

• Fix errors when dragging or scrolling mouse on viewer axes (#51, #52)

• Fix clicking on current selection in EventList, EpochEncoder table, and DataFrameView (#54, #55)

• Fix for standalone app crash when signals start after t=2.1 (#38)

• Catch make_video_file crash (#59)

• 2 bug fixes (#22)

• Some bug fixes (#9)

• Hide debug statements (#32)

5.4. Version 1.1.0 27

https://github.com/NeuralEnsemble/ephyviewer/pull/45
https://github.com/NeuralEnsemble/ephyviewer/pull/49
https://github.com/NeuralEnsemble/ephyviewer/pull/50
https://github.com/NeuralEnsemble/ephyviewer/pull/23
https://github.com/NeuralEnsemble/ephyviewer/pull/48
https://github.com/NeuralEnsemble/ephyviewer/pull/7
https://github.com/NeuralEnsemble/ephyviewer/pull/28
https://github.com/NeuralEnsemble/ephyviewer/pull/29
https://github.com/NeuralEnsemble/ephyviewer/pull/39
https://github.com/NeuralEnsemble/ephyviewer/pull/47
https://github.com/NeuralEnsemble/ephyviewer/pull/44
https://github.com/NeuralEnsemble/ephyviewer/pull/56
https://github.com/NeuralEnsemble/ephyviewer/pull/57
https://github.com/NeuralEnsemble/ephyviewer/pull/58
https://github.com/NeuralEnsemble/ephyviewer/pull/61
https://github.com/NeuralEnsemble/ephyviewer/pull/64
https://github.com/NeuralEnsemble/ephyviewer/pull/10
https://github.com/NeuralEnsemble/ephyviewer/pull/11
https://github.com/NeuralEnsemble/ephyviewer/pull/30
https://github.com/NeuralEnsemble/ephyviewer/pull/31
https://github.com/NeuralEnsemble/ephyviewer/pull/33
https://github.com/NeuralEnsemble/ephyviewer/pull/36
https://github.com/NeuralEnsemble/ephyviewer/pull/35
https://github.com/NeuralEnsemble/ephyviewer/pull/37
https://github.com/NeuralEnsemble/ephyviewer/pull/15
https://github.com/NeuralEnsemble/ephyviewer/pull/46
https://github.com/NeuralEnsemble/ephyviewer/pull/51
https://github.com/NeuralEnsemble/ephyviewer/pull/52
https://github.com/NeuralEnsemble/ephyviewer/pull/54
https://github.com/NeuralEnsemble/ephyviewer/pull/55
https://github.com/NeuralEnsemble/ephyviewer/pull/38
https://github.com/NeuralEnsemble/ephyviewer/pull/59
https://github.com/NeuralEnsemble/ephyviewer/pull/22
https://github.com/NeuralEnsemble/ephyviewer/pull/9
https://github.com/NeuralEnsemble/ephyviewer/pull/32

ephyviewer Documentation, Release 1.2.1

5.4.7 Documentation

• Add epoch encoder example (#12)

• Update docs and README (#62)

5.5 Version 1.0.1

2018-03-26

• Bug fixes (#5)

5.6 Version 1.0.0

2017-09-21

• Initial release

28 Chapter 5. Release Notes

https://github.com/NeuralEnsemble/ephyviewer/pull/12
https://github.com/NeuralEnsemble/ephyviewer/pull/62
https://github.com/NeuralEnsemble/ephyviewer/pull/5

	Overview
	Installation
	User Interface
	Examples
	Simple signal viewer
	Signal viewer with data source
	Signal viewer with markers
	Time-frequency viewer
	Spike train viewer
	Epoch viewer
	Epoch encoder
	Mixed viewer
	Viewers from Neo objects

	Release Notes
	Version 1.2.1
	Version 1.2.0
	Version 1.1.1
	Version 1.1.0
	Version 1.0.1
	Version 1.0.0

